Trichromatic Online Matching in Real-time Spatial Crowdsourcing

Tianshu Song 1, Yongxin Tong 1, Libin Wang 1, Jieying She 2, Bin Yao 3, Lei Chen 2, Ke Xu 1

1 SKLSDE Lab and IRI, Beihang University, China
2 The Hong Kong University of Science and Technology, Hong Kong, China
3 Shanghai Jiao Tong University, China

1{yxtong, songts, lbwang, kexu}@buaa.edu.cn, 2{she, leichen}@cse.ust.hk, 3yaobin@cs.sjtu.edu.cn

Introduction

• Spatial Crowdsourcing (a.k.a Mobile Crowdsourcing)
 • Online platforms that facilitate spatial tasks to be assigned and performed by crowd workers, e.g. O2O applications.

• Motivation
 • Most O2O platforms work on real-time scenarios.
 • Some emerging O2O applications need to assign three types of objects:
 • Sports trainers, sports facilities and users.
 • Hairstylists, salon and customers.

The GOMA Problem

• Given
 • A set of tasks requester \(T \): location \(t_r \), arriving time \(b_r \), leaving time \(e_r \) and range radius \(r_r \).
 • A set of crowd workers \(W \)
 • Each \(w \in W \): location \(t_w \), arriving time \(b_w \), leaving time \(e_w \), range radius \(r_w \).
 • A set of crowd workplaces \(P \)
 • Each \(p \in P \): location \(t_p \), arriving time \(b_p \), leaving time \(e_p \).
 • Utility Function: \(U(t, p, w) \).

• Find a matching \(M \) to maximize the total utility
 \[\text{MaxSum}(M) = \sum_{t \in T, p \in P, w \in W} U(t, p, w) \] s.t.
 • Deadline Constraint.
 • Range Constraint.
 • Invariable Constraint: Once a task \(t \) is assigned to a worker \(w \), the allocation of \(t \) cannot be changed.

Online Algorithm Evaluation: Competitive Ratio (CR)

• Randomized Algorithm

\[\text{CR} = \frac{\min_{\text{OPT}(T, W, P, U)} \text{MaxSum}(\text{OPT})}{\text{MaxSum}(M)} \]

Greedy Algorithm

• Match all triples when it is possible

Basic-Threshold Algorithm

• Steps
 1. Choose an integer \(k \) from 1 to \(\ln(U_{\text{max}} + 1) \)
 2. Filter the edges with weights greater than \(e^k \).
 3. Use a greedy strategy on the remaining edges.

Adaptive-Threshold Algorithm

• Adaptively adjust the probability distribution of choosing different thresholds.
• When an object appear, choose a new threshold according to the learned probability distribution

\[\text{MaxSum} \geq (1 - \epsilon) \text{MaxSum(OPT Basic-Threshold)} - \frac{(1 - \epsilon) \epsilon}{2\epsilon} \sum_{t \in T} (p(t))^2 - \frac{\epsilon^2}{4} \ln(\epsilon) \]

Experimental Evaluation

Object	Location	Arrival Time	Leaving Time
\(t_1 \) | (4.50,6.00) | 8.00 | 8.10 |
\(t_2 \) | (4.50,4.75) | 8.02 | 8.12 |
\(t_3 \) | (5.50,5.00) | 8.05 | 8.15 |
\(t_4 \) | (3.00,4.50) | 8.08 | 8.18 |
\(t_5 \) | (2.50,3.00) | 8.10 | 8.20 |
\(t_6 \) | (4.00,3.25) | 8.11 | 8.21 |
\(t_7 \) | (3.25,2.00) | 8.13 | 8.23 |
\(t_8 \) | (5.00,3.50) | 8.15 | 8.25 |
\(t_9 \) | (5.50,2.00) | 8.17 | 8.27 |
\(t_{10} \) | (4.50,2.00) | 8.19 | 8.29 |

Utility Score	Match	Utility Score	Match
\((t_1, p_1, w_1) \) | 18 | \((t_1, p_1, w_1) \) | 20 |
\((t_2, p_2, w_2) \) | 10 | \((t_2, p_2, w_2) \) | 12 |
\((t_3, p_3, w_3) \) | 90 | \((t_3, p_3, w_3) \) | 48 |
\((t_4, p_4, w_4) \) | 20 | \((t_4, p_4, w_4) \) | 72 |
\((t_5, p_5, w_5) \) | 20 | \((t_5, p_5, w_5) \) | 12 |